用户名: 密码: 验证码:
Doping Evolution and Junction Formation in Stacked Cyanine Dye Light-Emitting Electrochemical Cells
详细信息    查看全文
文摘
Cyanine dyes are fluorescent organic salts with intrinsic conductivity for ionic and electronic charges. Recently ( J. Am. Chem. Soc. 2013, 135, 1800818011), these features have been exploited in cyanine light-emitting electrochemical cells (LECs). Here, we demonstrate that stacked, constant-voltage driven trimethine cyanine LECs with various counteranions develop a pin junction that is composed of p- and n-doped zones and an intrinsic region where light-emission occurs. We introduce a method that combines spectral photocurrent response measurements with optical modeling and find that at maximum current the intrinsic region is centered at ∼37% away from the anode. Transient capacitance, photoluminescence and attenuance experiments indicate a device situation with a narrow p-doped region, an undoped region that occupies ∼72% of the dye layer thickness and an n-doped region with a maximum doping concentration of 0.08 dopant/cyanine molecule. Finally, we observe that during device relaxation the parent cyanines are not reformed. We ascribe this to irreversible reactions between doped cyanine radicals. For sterically conservative cyanine dyes, this suggests that undesired radical decomposition pathways limit the LEC long-term stability in general.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700