用户名: 密码: 验证码:
Pre-Lithiation of Li(Ni1-x-yMnxCoy)O2 Materials Enabling Enhancement of Performance for Li-Ion Battery
详细信息    查看全文
文摘
Transition metal oxide materials Li(Ni<sub>xsub>Mn<sub>ysub>Co<sub>zsub>)O<sub>2sub> (NMCxyz) based on layered structure are potential cathode candidates for automotive Li-ion batteries because of their high specific capacities and operating potentials. However, the actual usable capacity, cycling stability, and first-cycle Coulombic efficiency remain far from practical. Previously, we reported a combined strategy consisting of depolarization with embedded carbon nanotube (CNT) and activation through pre-lithiation of the NMC host, which significantly improved the reversible capacity and cycling stability of NMC532-based material. In the present work we attempt to understand how pre-lithiation leads to these improvements on an atomic level with experimental investigation and ab initio calculations. By lithiating a series of NMC materials with varying chemical compositions prepared via a conventional approach, we identified the Ni in the NMC lattice as the component responsible for accommodating a double-layered Li structure. Specifically, much better improvements in the cycling stability and capacity can be achieved with the NMC lattices populated with Ni<sup>3+sup> than those populated with only Ni<sup>2+sup>. Using the XRD we also found that the emergence of a double-layer Li structure is not only reversible during the pre-lithiation and the following delithiation, but also stable against elevated temperatures up to 320 °C. These new findings regarding the mechanism of pre-lithiation as well as how it affects the reversibility and stability of NMC-based cathode materials prepared by the conventional slurry approach will promote the possibility of their application in the future battery industry.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700