用户名: 密码: 验证码:
Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup
详细信息    查看全文
文摘
To efficiently remove and recycle oil spills, we construct aligned ZnO nanorod arrays on the surface of the porous stainless steel wire mesh to fabricate a porous unmanned ship (PUS) with properties of superhydrophobicity, superoleophilicity, and low drag by imitating the structure of nonwetting leg of water strider. The superhydrophobicity of the PUS is stable, which can support 16.5 cm water column with pore size of 100 渭m. Water droplet can rebound without adhesion. In the process of oil/water separation, when the PUS contacts with oil, the oil is quickly pulled toward and penetrates into the PUS automatically. The superhydrophobicity and low water adhesion force of the PUS surface endow the PUS with high oil recovery capacity (above 94%) and drag-reducing property (31% at flowing velocity of 0.38m/s). In addition, the PUS has good corrosion resistance and reusability. We further investigate the wetting behavior of water and oil, oil recovery capacity, drag-reducing property, and corrosion resistance of the PUS after oil absorbed. The PUS surface changes significantly from superhydrophobic to hydrophobic after absorbing oil. However, the oil absorbed PUS possesses better drag-reducing property and corrosion resistance due to the changes of the motion state of the water droplets.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700