用户名: 密码: 验证码:
Temperature-Dependent Photoluminescence of ZnCuInS/ZnSe/ZnS Quantum Dots
详细信息    查看全文
文摘
Colloidal ZnCuInS/ZnSe/ZnS core/shell/shell quantum dots (QDs) with average particle sizes of 2.3, 2.7, and 3.3 nm were prepared in a noncoordinating solvent. The size-dependent optical band gap and photoluminescence (PL) band shift due to the quantum confinement effect were observed. Because the PL band showed a large Stokes shifts over 400 meV, the origin of the PL band was related to the electronic transition via defect levels. A time-resolved PL measurement indicated that the PL lifetime of the QDs was a characteristic feature of three dominating transitions from the conduction band to surface defect level, from the conduction band to an acceptor level, and from the donor level to an acceptor level. It was investigated as a function of temperature in the range from 50 to 373 K to understand the radiative and nonradiative relaxation processes and fitted with two empirical expressions, from which the Huang鈥揜hys factor and the phonon energy were calculated. According to the fitting data, the size-dependent parameters were analyzed including the Huang鈥揜hys factor, the average phonon energy, and the excitonic-acoustic phonon coupling coefficient. The temperature coefficient was about 鈭?.32 脳 10鈥? eV/K. The results showed that, in the temperature range from 50 to 373 K, the variations of the energy band gap and the photoluminescence line broadening were predominantly due to an optical transition from the band edge to the defect-related level and the coupling of the carriers to acoustic phonon, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700