用户名: 密码: 验证码:
Ionic Liquid Based Separations of Trivalent Lanthanide and Actinide Ions.
详细信息    查看全文
  • 作者:Ilya A. Shkrob ; Timothy W. Marin ; Mark P. Jensen
  • 刊名:Industrial & Engineering Chemistry Research
  • 出版年:2014
  • 出版时间:March 5, 2014
  • 年:2014
  • 卷:53
  • 期:9
  • 页码:3641-3653
  • 全文大小:597K
  • 年卷期:v.53,no.9(March 5, 2014)
  • ISSN:1520-5045
文摘
Group separations of lanthanides from minor actinides is required in the currently considered scenarios for closing of the nuclear fuel cycle. TALSPEAK is a well-known and historically first process suggested for such separations. The process is based on competitive complexation of trivalent f-group ions by an aminopolycarboxylate (such as the base of diethylenetriamine-N,N,N鈥?N鈥?N鈥?pentaacetic acid, DTPA) in an aqueous buffer and a dialkylphosphate (such as the base of bis(2-ethylhexyl)phosphoric acid, HDEHP) in an organic phase. Unfortunately, this method exhibits excessive sensitivity to pH and composition of the aqueous feed. In this study, we 鈥硆einvent鈥?TALSPEAK, retaining the competitive ion binding but changing considerably the chemical implementation of the underlying general principles. The DTPA moiety is integrated into a functionalized ionic liquid (IL) that is immiscible with an organic phase containing dialkylphosphate ligands. Choline and betainium bistriflimides double as IL diluents and synthetic reagents. The integration of the aminopolycarboxylate moiety into these ILs is achieved in situ through the reactions of the cyclical dianhydride of DTPA with IL functional groups, either through the formation of a mixed dianhydride (for the betainium cation) or a diester (for the choline cation). The deprotonated DTPA鈥揵etainium conjugate forms 1:1 complexes with trivalent f-element cations whereas these metal ions form 1:2 complexes with the DTPA鈥揷holine conjugates. Large separation factors for Eu/Am partitioning between the two phases are observed, approaching 120鈥?50 for DTPA鈥揵etainium and 250鈥?70 for DTPA鈥揷holine. In the latter system, as in the traditional aqueous TALSPEAK, there is a characteristic 鈥硃arabolic鈥?dependence of the phase distribution ratios as a function of ionic radius that allows separations of the largest lanthanide ions. Group separations of all lanthanides from americium has been demonstrated, and a separation process that is based on this chemistry is suggested.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700