用户名: 密码: 验证码:
Electrical Transport Properties of BaWO4 under High Pressure
详细信息    查看全文
文摘
An alternate current impedance spectrum was utilized to differentiate the electrical transport process, respectively, in the bulk and the grain boundary of barium tungstate microcrystallines under high pressures up to 20 GPa. For powdered BaWO4 microcrystallines, the grain boundary makes a more remarkable contribution than the bulk to the total resistance. The discontinuities of bulk resistance and relaxation frequency at about 7 and 14 GPa reflect the pressure-induced structural phase transitions of BaWO4 from scheelite to fergusonite structure and from fergusonite to an unknown disordered structure, respectively. The activation energy of the grain boundary decreases with increasing pressure from 6.9 to 8.9 GPa, indicating that the compression has a negative contribution to the activation energy and the transport of charge carriers through the boundary becomes easier. The activation energy of the bulk also shows a similar phenomenon. In addition, the ascending relaxation frequency of the bulk and grain boundary shows that the polarization process needs much shorter time in the state of three-phase coexistence.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700