用户名: 密码: 验证码:
Key Roles of Lewis Acid–Base Pairs on ZnxZryOz in Direct Ethanol/Acetone to Isobutene Conversion
详细信息    查看全文
文摘
The effects of surface acidity on the cascade ethanol-to-isobutene conversion were studied using ZnxZryOz catalysts. The ethanol-to-isobutene reaction was found to be limited by the secondary reaction of the key intermediate, acetone, namely the acetone-to-isobutene reaction. Although the catalysts with coexisting Br?nsted acidity could catalyze the rate-limiting acetone-to-isobutene reaction, the presence of Br?nsted acidity is also detrimental. First, secondary isobutene isomerization is favored, producing a mixture of butene isomers. Second, undesired polymerization and coke formation prevail, leading to rapid catalyst deactivation. Most importantly, both steady-state and kinetic reaction studies as well as FTIR analysis of adsorbed acetone-d6 and D2O unambiguously showed that a highly active and selective nature of balanced Lewis acid–base pairs was masked by the coexisting Br?nsted acidity in the aldolization and self-deoxygenation of acetone to isobutene. As a result, ZnxZryOz catalysts with only Lewis acid–base pairs were discovered, on which nearly a theoretical selectivity to isobutene (~88.9%) was successfully achieved, which has never been reported before. Moreover, the absence of Br?nsted acidity in such ZnxZryOz catalysts also eliminates the side isobutene isomerization and undesired polymerization/coke reactions, resulting in the production of high purity isobutene with significantly improved catalyst stability (<2% activity loss after 200 h time-on-stream). This work not only demonstrates a balanced Lewis acid–base pair for the highly active and selective cascade ethanol-to-isobutene reaction but also sheds light on the rational design of selective and robust acid–base catalyst for C–C coupling via aldolization reaction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700