用户名: 密码: 验证码:
High Lateral Resolution vs Molecular Preservation in near-IR fs-Laser Desorption Postionization Mass Spectrometry
详细信息    查看全文
文摘
Ultrashort pulse length lasers operating in the near-infrared region show promise for submicrometer lateral resolution by laser desorption-based mass spectrometry (MS) imaging. However, these experiments must balance lateral resolution and molecular fragmentation since abundant atomic ions are observed at the high laser irradiances that can be generated by tightly focused ultrashort pulse laser beams. It is shown here that combining ultrashort pulse laser desorption with laser postionization (fs-LDPI) allows for a considerable increase of molecular ion signal while operating with lower laser irradiances, yielding the added benefit of reduced molecular fragmentation. This Letter presents several experimental results in support of the fs-LDPI approach for MS imaging. First, the lateral resolution for MS imaging of molecular species desorbed by 鈭?5 fs, 800 nm laser pulses was determined to be <2 渭m for a simulated organic electronic device under vacuum. Next, the dependence of precursor ion survival on both desorption laser fluence and delay between desorption and photoionization laser pulses was observed for a small molecule desorbed from an organic multilayer that was originally devised as a model of a bacterial biofilm. When considered in light of recent results in the literature (Milasinovic et al. J. Phys. Chem. C 2014, DOI: 10.1021/jp504062u), these experiments demonstrate the potential for submicrometer spatial resolution MS imaging by fs-LDPI.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700