用户名: 密码: 验证码:
Effects of Oxygen Impurities on Glass-Formation Ability in Zr2Cu Alloy
详细信息    查看全文
文摘
Using ab initio molecular dynamics simulations, we show that oxygen (O) impurities have a noticeable influence on the glass-formation ability (GFA) in Zr2Cu alloy. Cu-centered icosahedral clusters and Zr-centered Kasper polyhedra are the dominate short-range orders in undercooled Zr2Cu liquid which are most likely to be responsible for the glass formation in Zr2Cu systems. When O is introduced, a Zr octahedron is formed around the O impurity. Most of the Zr atoms in the octahedron also serve as the bridging atoms for cross-linked Kasper polyhedral network, resulting in an O-centered medium range order (MRO) structure. Meanwhile, Cu atoms are moved away from the first shell of O-centered octahedral clusters. With 1 at. % O impurities, the fractions of Zr-centered clusters are less affected, while the increase of ideal icosahedral order and decrease of distorted icosahedral order lead to a more stable atomic structure. This result suggests that a low concentration of O impurities would improve the GFA in Zr2Cu alloy. However, when ∼5 at. % O impurities are included, the ideal icosahedral clusters and Zr-centered Kasper polyhedra are seriously suppressed by the formation of O-centered MRO, which can lead to deterioration of GFA. Our analyses provide useful insight into glass formation behavior in O-doped metallic alloy systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700