用户名: 密码: 验证码:
Modulating the Bond Strength of DNA–Nanoparticle Superlattices
详细信息    查看全文
文摘
A method is introduced for modulating the bond strength in DNA–programmable nanoparticle (NP) superlattice crystals. This method utilizes noncovalent interactions between a family of [Ru(dipyrido[2,3-a:3′,2′-c]phenazine)(N–N)2]2+-based small molecule intercalators and DNA duplexes to postsynthetically modify DNA–NP superlattices. This dramatically increases the strength of the DNA bonds that hold the nanoparticles together, thereby making the superlattices more resistant to thermal degradation. In this work, we systematically investigate the relationship between the structure of the intercalator and its binding affinity for DNA duplexes and determine how this translates to the increased thermal stability of the intercalated superlattices. We find that intercalator charge and steric profile serve as handles that give us a wide range of tunability and control over DNA–NP bond strength, with the resulting crystal lattices retaining their structure at temperatures more than 50 °C above what nonintercalated structures can withstand. This allows us to subject DNA–NP superlattice crystals to conditions under which they would normally melt, enabling the construction of a core–shell (gold NP-quantum dot NP) superlattice crystal.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700