用户名: 密码: 验证码:
Theoretical Study of Triboelectric-Potential Gated/Driven Metal–Oxide–Semiconductor Field-Effect Transistor
详细信息    查看全文
文摘
Triboelectric nanogenerator has drawn considerable attentions as a potential candidate for harvesting mechanical energies in our daily life. By utilizing the triboelectric potential generated through the coupling of contact electrification and electrostatic induction, the “tribotronics” has been introduced to tune/control the charge carrier transport behavior of silicon-based metal–oxide–semiconductor field-effect transistor (MOSFET). Here, we perform a theoretical study of the performances of tribotronic MOSFET gated by triboelectric potential in two working modes through finite element analysis. The drain-source current dependence on contact-electrification generated triboelectric charges, gap separation distance, and externally applied bias are investigated. The in-depth physical mechanism of the tribotronic MOSFET operations is thoroughly illustrated by calculating and analyzing the charge transfer process, voltage relationship to gap separation distance, and electric potential distribution. Moreover, a tribotronic MOSFET working concept is proposed, simulated and studied for performing self-powered FET and logic operations. This work provides a deep understanding of working mechanisms and design guidance of tribotronic MOSFET for potential applications in micro/nanoelectromechanical systems (MEMS/NEMS), human-machine interface, flexible electronics, and self-powered active sensors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700