用户名: 密码: 验证码:
CeO2鈥揟iO2 Sorbents for the Removal of Elemental Mercury from Syngas
详细信息    查看全文
文摘
A series of CeO2鈥揟iO2 (CeTi) sorbents with different CeO2/TiO2 mass ratios were prepared by an impregnation method and employed to remove elemental mercury (Hg0) in simulated syngas. The CeTi sorbents with a CeO2/TiO2 mass ratio of 0.2 exhibited superior Hg0 removal efficiency from 80 to 150 掳C, which could be ascribed to the greater amount of surface chemisorbed oxygen resulted from Ce3+ on the sample surface. H2S was the most effective syngas component responsible for Hg0 removal. The use of 400 ppm H2S resulted in 98% Hg0 removal efficiency under the experimental conditions. H2 and CO had a negligible effect on the efficiency of Hg removal. In the presence of H2S, a prohibitive effect of HCl and NH3 on Hg0 removal was observed because of the consumption of the surface oxygen. Water vapor also inhibited Hg0 removal due to competitive adsorption with H2S. Hg0 removal over CeTi sorbents was proposed to follow the Eley鈥揜ideal mechanism, in which active surface sulfur reacts with gas-phase Hg0. This large oxygen storage capacity of CeTi sorbents is quite favorable to H2S catalytic oxidation and Hg0 emission control in an extremely reducing environment, such as when there is a deficiency of O2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700