用户名: 密码: 验证码:
Magnetically Switchable Bioelectrocatalytic System Based on Ferrocene Grafted Iron Oxide Nanoparticles
详细信息    查看全文
文摘
A simple and versatile method for the introduction of redox unites onto the surface of magnetic nanoparticles has been developed based on 鈥渃lick鈥?chemistry. Azide-functionalized Fe2O3 magnetic nanoparticles were synthesized and further reacted with ethynylferrocene via Cu(I)-catalyzed azide alkyne 1,3-dipolar cycloaddition (CuAAC) reaction. The functionalized magnetic nanoparticles were characterized using a powder X-ray diffractometer (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscope (FTIR), and vibrating sample magnetometer (VSM). The resulting materials have properties of both magnetism and electrochemistry, and the electrochemical properties of the nanoparticles are dependent on the features of ethynylferrocene, while the magnetic properties remain independent of ethynylferrocene. Because of the magnetism of Fe2O3 nanoparticles and the electrocatalytic activity of ferrocene unites, a recyclable, magneto-switchable bioelectrocatalytic system for glucose oxidation in the presence of glucose oxidase is developed by alternate positioning of an external magnet, and the system has a linear response for glucose biosensing over the range of 1.0鈭?0.0 mM.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700