用户名: 密码: 验证码:
Enhancing the Stiffness of Electrospun Nanofiber Scaffolds with a Controlled Surface Coating and Mineralization
详细信息    查看全文
文摘
A new method was developed to coat hydroxyapatite (HAp) onto electrospun poly(lactic-co-glycolic acid) (PLGA) nanofibers for tendon-to-bone insertion site repair applications. Prior to mineralization, chitosan and heparin were covalently immobilized onto the surface of the fibers to accelerate the nucleation of bone-like HAp crystals. Uniform coatings of HAp were obtained by immersing the nanofiber scaffolds into a modified, 10-fold-concentrated simulated body fluid (m10SBF) for different periods of time. The new method resulted in thicker and denser coatings of mineral on the fibers compared to those produced by previously reported methods. Scanning electron microscopy measurements confirmed the formation of nanoscale HAp particles on the fibers. A mechanical property assessment demonstrated a higher stiffness with respect to previous coating methods. A combination of the nanoscale fibrous structure and bonelike mineral coating could mimic the structure, composition, and function of mineralized tissues.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700