用户名: 密码: 验证码:
The Hydratase Activity of Malonate Semialdehyde Decarboxylase: Mechanistic and Evolutionary Implications
详细信息    查看全文
文摘
Malonate semialdehyde decarboxylase (MSAD) is a member of the tautomerase superfamily, a group of structurally homologous proteins that have a characteristic beta2.gif" BORDER=0 ALIGN="middle">--beta2.gif" BORDER=0 ALIGN="middle">-fold and a catalytic amino-terminal proline. In addition to its physiological decarboxylase activity, the conversion of malonate semialdehyde to acetaldehyde and carbon dioxide, the enzyme has now been found to display a promiscuous hydratase activity, converting 2-oxo-3-pentynoate to acetopyruvate, with a kcat/Km value of 6.0 × 102 M-1 s-1. Pro-1 and Arg-75 are critical for both activities, and the pKa of Pro-1 was determined to be ~9.2 by a direct 15N NMR titration. These observations implicate a decarboxylation mechanism in which Pro-1 polarizes the carbonyl oxygen of substrate by hydrogen bonding and/or an electrostatic interaction. Arg-75 may position the carboxylate group into a favorable orientation for decarboxylation. Both the hydratase activity and the pKa value of Pro-1 are shared with trans-3-chloroacrylic acid dehalogenase, another tautomerase superfamily member that precedes MSAD in a bacterial degradation pathway for trans-1,3-dichloropropene. Hence, MSAD and CaaD could have evolved by divergent evolution from a common ancestral protein, retaining the necessary catalytic components for the conjugate addition of water.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700