用户名: 密码: 验证码:
Gravure-Printed Sol鈥揋els on Flexible Glass: A Scalable Route to Additively Patterned Transparent Conductors
详细信息    查看全文
文摘
Gravure printing is an attractive technique for patterning high-resolution features (<5 渭m) at high speeds (>1 m/s), but its electronic applications have largely been limited to depositing nanoparticle inks and polymer solutions on plastic. Here, we extend the scope of gravure to a new class of materials and on to new substrates by developing viscous sol鈥揼el precursors for printing fine lines and films of leading transparent conducting oxides (TCOs) on flexible glass. We explore two strategies for controlling sol鈥揼el rheology: tuning the precursor concentration and tuning the content of viscous stabilizing agents. The sol鈥揼el chemistries studied yield printable inks with viscosities of 20鈥?60 cP. The morphology of printed lines of antimony-doped tin oxide (ATO) and tin-doped indium oxide (ITO) is studied as a function of ink formulation for lines as narrow as 35 渭m, showing that concentrated inks form thicker lines with smoother edge morphologies. The electrical and optical properties of printed TCOs are characterized as a function of ink formulation and printed film thickness. XRD studies were also performed to understand the dependence of electrical performance on ink composition. Printed ITO lines and films achieve sheet resistance (Rs) as low as 200 and 100 惟/鈻? respectively (蟻 鈮?2 脳 10鈥? 惟-cm) for single layers. Similarly, ATO lines and films have Rs as low as 700 and 400 惟/鈻?with 蟻 鈮?7 脳 10鈥? 惟-cm. High visible range transparency is observed for ITO (86鈥?8%) and ATO (86鈥?9%). Finally, the influence of moderate bending stress on ATO films is investigated, showing the potential for this work to scale to roll-to-roll (R2R) systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700