用户名: 密码: 验证码:
Electronic and Optical Properties of Edge-Functionalized Graphene Quantum Dots and the Underlying Mechanism
详细信息    查看全文
  • 作者:Yunhai Li ; Huabing Shu ; Xianghong Niu ; Jinlan Wang
  • 刊名:Journal of Physical Chemistry C
  • 出版年:2015
  • 出版时间:November 5, 2015
  • 年:2015
  • 卷:119
  • 期:44
  • 页码:24950-24957
  • 全文大小:505K
  • ISSN:1932-7455
文摘
We systematically investigate the electronic structure and optical properties of edge-functionalized graphene quantum dots (GQDs) utilizing density functional and many-particle perturbation theories. A mechanism based on the competition and collaboration between frontier orbital hybridization and charge transfer is proposed. The frontier orbital hybridization of the GQD moiety and functional group reduces the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), while the charge transfer from the GQD moiety to the functional group enlarges it. Contrarily, frontier orbital hybridization and charge transfer collaborate to shift down the energy of the first bright exciton, the former through activation of low-lying dark excitons and the latter via increased exciton binding energy. Functional groups containing a carbon鈥搊xygen double bond (C鈺怬), namely, aldehyde (鈭扖HO), ketone (鈭扖OCH3), and carboxyl (鈭扖OOH), are more favorable for tailoring the electronic and optical properties of pristine GQD among all the functional groups investigated here. The amino group (鈭扤H2), although frequently employed in experiments, has a much weaker influence on electronic structure since the large charge transfer cancels out the effect of frontier orbital hybridization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700