用户名: 密码: 验证码:
Carbon Nanotube-Loaded Electrospun LiFePO4/Carbon Composite Nanofibers As Stable and Binder-Free Cathodes for Rechargeable Lithium-Ion Batteries
详细信息    查看全文
文摘
LiFePO4/CNT/C composite nanofibers were synthesized by using a combination of electrospinning and sol鈥揼el techniques. Polyacrylonitrile (PAN) was used as the electrospinning media and carbon source. Functionalized CNTs were used to increase the conductivity of the composite. LiFePO4 precursor materials, PAN and functionalized CNTs were dissolved or dispersed in N,N鈥揹imethylformamide separately and they were mixed before electrospinning. LiFePO4 precursor/CNT/PAN composite nanofibers were then heat-treated to obtain LiFePO4/CNT/C composite nanofibers. Fourier transform infrared spectroscopy measurements were done to demonstrate the functionalization of CNTs. The structure of LiFePO4/CNT/C composite nanofibers was determined by X鈥搑ay diffraction analysis. The surface morphology and microstructure of LiFePO4/CNT/C composite nanofibers were characterized using scanning electron microscopy and transmission electron microscopy. Electrochemical performance of LiFePO4/CNT/C composite nanofibers was evaluated in coin-type cells. Functionalized CNTs were found to be well-dispersed in the carbonaceous matrix and increased the electrochemical performance of the composite nanofibers. As a result, cells using LiFePO4/CNT/C composite nanofibers have good performance, in terms of large capacity, extended cycle life, and good rate capability.

Keywords:

lithium-ion batteries; cathodes; LiFePO4; carbon nanofibers; carbon nanotubes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700