用户名: 密码: 验证码:
Chemical Self-Doping of Organic Nanoribbons for High Conductivity and Potential Application as Chemiresistive Sensor
详细信息    查看全文
文摘
Intrinsically low electrical conductivity of organic semiconductors hinders their further development into practical electronic devices. Herein, we report on an efficient chemical self-doping to increase the conductivity through one-dimensional stacking arrangement of electron donor–acceptor (D–A) molecules. The D–A molecule employed was a 1-methylpiperidine-substituted perylene tetracarboxylic diimide (MP-PTCDI), of which the methylpiperidine moiety is a strong electron donor, and can form a charge transfer complex with PTCDI (acting as the acceptor), generating anionic radical of PTCDI as evidenced in molecular solutions. Upon self-assembling into nanoribbons through columnar π–π stacking, the intermolecular charge transfer interaction between methylpiperidine and PTCDI would be enhanced, and the electrons generated are delocalized along the π–π stacking of PTCDIs, leading to enhancement in conductivity. The conductive fiber materials thus produced can potentially be used as chemiresistive sensor for vapor detection of electron deficient chemicals such as hydrogen peroxide, taking advantage of the large surface area of nanofibers. As a major component of improvised explosives, hydrogen peroxide remains a critical signature chemical for public safety screening and monitoring.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700