用户名: 密码: 验证码:
Vacuum Topotactic Conversion Route to Mesoporous Orthorhombic MoO3 Nanowire Bundles with Enhanced Electrochemical Performance
详细信息    查看全文
文摘
The growth of mesoporous bundles composed of orthorhombic MoO3 nanowires with diameters ranging from 10 to 30 nm and lengths of up to 2 渭m by topotactic chemical transformation from triclinic 伪-MoO3路H2O nanorods under vacuum condition at 260 掳C is achieved. During the process of vacuum topotactic transformation, the nanorod frameworks of the precursor 伪-MoO3路H2O can be preserved. The crystal structures, molecular structures, morphologies, and growth behavior of the precursory, intermediate and final products are characterized using powder X-ray diffraction (PXRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected-area electron diffraction (SAED). Detailed studies of the mechanism of the mesoporous MoO3 nanowire bundles formation indicate topotactic nucleation and oriented growth of the well-organized orthorhombic MoO3 nanowires inside the nanorod frameworks. MoO3 nanocrystals prefer [001] epitaxial growth direction of triclinic 伪-MoO3路H2O nanorods due to the structural matching of [001] 伪-MoO3路H2O//[100] MoO3. The electrochemical measurement of the mesoporous MoO3 nanowire bundles indicates that their galvanostatic Li storage performance can be significantly improved. The high reversible capacities of 954.8 mA h g鈥? can be retained over 150 cycles. The topotactic growth under vacuum based on the crystal structural relationship of hydrated metal oxide and related metal oxide will provide an effective and all-purpose route to controlled preparation of novel micro/nanostructured oxides (such as V2O5 and WO3 nanowires, etc.) with enhanced properties (energy storage/conversion, organic electronics, catalysis, gas-sensor, and so on).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700