用户名: 密码: 验证码:
Graphene Quantum Dot–MnO2 Nanosheet Based Optical Sensing Platform: A Sensitive Fluorescence “Turn Off–On” Nanosensor for Glutathione Detection and Intracellular Imaging
详细信息    查看全文
文摘
Glutathione (GSH) monitoring has attracted extensive attention because it serves a vital role in human pathologies. Herein, a convenient fluorescence “turn off–on” nanosensor based on graphene quantum dots (GQDs)–manganese dioxide (MnO2) nanosheet has been designed for selective detection of GSH in living cells. The fluorescence intensity of GQDs can be quenched by MnO2 nanosheets via a fluorescence resonance energy transfer. However, GSH can reduce MnO2 nanosheets to Mn2+ cations and release GQDs, causing sufficient recovery of fluorescent signal. The MnO2 nanosheets serve as both fluorescence nanoquencher and GSH recognizer in the sensing platform. The sensing platform displayed a sensitive response to GSH in the range of 0.5–10 μmol L–1, with a detection limit of 150 nmol L−1. Furthermore, the chemical response of the GQDs–MnO2 nanoprobe exhibits high selectivity toward GSH over other electrolytes and biomolecules. Most importantly, the promising platform was successfully applied in monitoring the intracellular GSH in living cells, indicating its great potential to be used in disease diagnosis. Meanwhile, this GQDs–MnO2 platform is also generalizable and can be easily expanded to the detection and imaging of other reactive species in living cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700