用户名: 密码: 验证码:
Reversible Bacterial Adhesion on Mixed Poly(dimethylaminoethyl methacrylate)/Poly(acrylamidophenyl boronic acid) Brush Surfaces
详细信息    查看全文
文摘
A simple and versatile method for the preparation of surfaces to control bacterial adhesion is described. Substrates were first treated with two catechol-based polymerization initiators, one for thermal initiation and one for visible-light photoinitiation. Graft polymerization in sequence of dimethylaminoethyl methacrylate (DMAEMA) and 3-acrylamidebenzene boronic acid (BA) from the surface-bound initiators to form mixed polymer brushes on the substrate was then carried out. The PDMAEMA grafts were thermally initiated and the PBA grafts were visible-light-photoinitiated. Gold, poly(vinyl chloride) (PVC), and poly(dimethylsiloxane) (PDMS) were used as model substrates. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), and ellipsometry analysis confirmed the successful grafting of PDMAEMA/PBA mixed brushes. We demonstrated that the resulting surfaces showed charge-reversal properties in response to change of pH. The transition in surface charge at a specific pH allowed the surface to be reversibly switched from bacteria-adhesive to bacteria-resistant. At pH 4.5, below the isoelectric points (IEP, pH 5.3) of the mixed brushes, the surfaces are positively charged and the negatively charged Gram-positive S. aureus adheres at high density (2.6 脳 106 cells/cm2) due to attractive electrostatic interactions. Subsequently, upon increasing the pH to 9.0 to give negatively charged polymer brush surface, 鈭?0% of the adherent bacteria are released from the surface, presumably due to repulsive electrostatic interactions. This approach provides a simple method for the preparation of surfaces on which bacterial adhesion can be controlled and is applicable to a wide variety of substrates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700