用户名: 密码: 验证码:
A Genetically Encoded Acrylamide Functionality
详细信息    查看全文
文摘
N-Acryloyl-l-lysine, a noncanonical amino acid with an electron deficient olefin, is genetically encoded in Escherichia coli using a pyrrolysyl-tRNA synthetase mutant in coordination with tRNACUAPyl. The acrylamide moiety is stable in cells, whereas it is active enough to perform a diverse set of unique reactions for protein modifications in vitro. These reactions include 1,4-addition, radical polymerization, and 1,3-dipolar cycloaddition. We demonstrate that a protein incorporated with N-acryloyl-l-lysine is efficiently modified with thiol-containing nucleophiles at slightly alkali conditions, and the acrylamide moiety also allows rapid radical copolymerization of the same protein into a polyacrylamide hydrogel at physiological pH. At physiological conditions, the acrylamide functionality undergoes a fast 1,3-dipolar cycloaddition reaction with diaryl nitrile imine to show turn-on fluorescence. We have used this observation to demonstrate site-specific fluorescent labeling of proteins incorporated with N-acryloyl-l-lysine both in vitro and in living cells. This critical development allows easy access to an array of modified proteins for applications where high specificity and reaction efficiency are needed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700