用户名: 密码: 验证码:
In Vivo Virus-Based Macrofluorogenic Probes Target Azide-Labeled Surface Glycans in MCF-7 Breast Cancer Cells
详细信息    查看全文
文摘
Chemical addressability of viral particles has played a pivotal role in adapting these biogenic macromolecules for various applications ranging from medicine to inorganic catalysis. Cowpea mosaic virus possesses multiple features that are advantageous for the next generation of virus-based nanotechnology: consistent multimeric assemblies dictated by its genetic code, facile large scale production, and lack of observable toxicity in humans. Herein, the chemistry of the viral particles is extended with the use of Cu-free strain-promoted azide鈥揳lkyne cycloaddition reaction, or SPAAC reaction. The elimination of Cu, its cocatalyst and reducing agent, simplifies the reaction scheme to a more straightforward approach, which can be directly applied to living systems. As a proof of concept, the viral particles modified with the azadibenzylcyclooctyne functional groups are utilized to trigger and amplify a weak fluorescent signal (azidocoumarin) in live cell cultures to visualize the non-natural sugars. Future adaptations of this platform may be developed to enhance biosensing applications.

Keywords:

bionanoparticles; Cowpea mosaic virus; strain-promoted alkyne鈭抋zide cycloaddition (SPAAC) reaction; click chemistry; fluorogenic dye; bioconjugation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700