用户名: 密码: 验证码:
Fe3O4@SiO2@TiO2@Pt Hierarchical Core鈥揝hell Microspheres: Controlled Synthesis, Enhanced Degradation System, and Rapid Magnetic Separation to Recycle
详细信息    查看全文
文摘
Magnetic composite microspheres consisting of a SiO2-coated Fe3O4 core, an ordered TiO2 hierarchically structured shell, and a Pt nanoparticle layer dispersed on the surface of the TiO2 nanoplatelets have been successfully synthesized using a facile and efficient method. The shells of TiO2 hierarchical microspheres were assembled from nanoplatelets, which exposed the high-energy {001} facets, and the Pt nanoparticles were evenly deposited on the surface of the TiO2 nanoplatelets, with a concentration of 鈭? wt %. The resulting composite microspheres exhibited flower-like hierarchical structures with a 202.42 m2 g鈥? surface area and possessed superparamagnetic properties with a high saturation magnetization of 31.5 emu g鈥?. These features endow the obtained composite microspheres with a high adsorption capacity and strong magnetic responsivity that could be easily separated by an external magnetic field. The high photocatalytic activity toward Rhodamine B (RhB) degradation may be caused by the hierarchically structured TiO2 with exposed high-energy {001} facets and the Pt nanoparticle deposits on TiO2 surfaces, which would be efficient for the electron transfer reactions. In addition, the composite microspheres showed high recycling efficiency and stability over several separation cycles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700