用户名: 密码: 验证码:
Reactivity and Mechanism Studies of Hydrogen Evolution Catalyzed by Copper Corroles
详细信息    查看全文
文摘
Several copper corrole complexes were synthesized, and their catalytic activities for hydrogen (H2) evolution were examined. Our results showed that substituents at the meso positions of corrole macrocycles played significant roles in regulating the redox and thus the catalytic properties of copper corrole complexes: strong electron-withdrawing substituents can improve the catalysis for hydrogen evolution, while electron-donating substituents are not favored in this system. The copper complex of 5,15-pentafluorophenyl-10-(4-nitrophenyl)corrole (1) was shown to have the best electrocatalytic performance among copper corroles examined. Complex 1 can electrocatalyze H2 evolution using trifluoroacetic acid (TFA) as the proton source in acetonitrile. In cyclic voltammetry, the value of icat/ip = 303 (icat is the catalytic current, ip is the one-electron peak current of 1 in the absence of acid) at a scan rate of 100 mV s鈥? and 20 掳C is remarkable. Electrochemical and spectroscopic measurements revealed that 1 has the desired stability in concentrated TFA acid solution and is unchanged by functioning as an electrocatalyst. Stopped-flow, spectroelectrochemistry, and theoretical studies provided valuable insights into the mechanism of hydrogen evolution mediated by 1. Doubly reduced 1 is the catalytic active species that reacts with a proton to give the hydride intermediate for subsequent generation of H2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700