用户名: 密码: 验证码:
Relationship between Segmental Relaxation of Polystyrene Films and Stick鈥揝lip Behavior during Dynamic Wetting of Liquid Droplets on Their Surfaces
详细信息    查看全文
文摘
A novel method was previously reported for detecting the glass transition of thin polystyrene (PS) films by correlating the relationships between the temperature-dependent viscoelasticity of the PS films and stick鈥搒lip behavior on their surfaces during dynamic wetting of liquid droplets. In the present study, the frequency dependence of the stick鈥搒lip behavior is investigated. The results show that the stick鈥搒lip behavior of liquid dynamic wetting on PS films is dependent on the contact line velocity, which is related to the deformation frequency of the PS surface during the moving liquid front. The stick鈥搒lip behavior was revealed to be determined by a dimensionless parameter (尉), which is the ratio of the PS segmental relaxation time (蟿) and the characteristic time (蟿c) for PS surface deformation near the droplet contact line. When 尉 is close to 1 (蟿 鈮?蟿c), the 螖胃 (jumping angle), a scale of the stick鈥搒lip behavior, reaches a maximum. This correlation between 螖胃 and 尉 demonstrates that the stick鈥搒lip behavior is related to the energy dissipation caused by the PS 伪-relaxation process, and the peak temperature (or frequency) in 螖胃 corresponds to the 伪-relaxation temperature (time) of the polymer. These results strongly demonstrate that the utilization of the stick鈥搒lip behavior is a creditable method, similar to dynamic viscoelastic measurement, for probing the glass transition and segmental relaxation of thin polymer films.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700