用户名: 密码: 验证码:
Chemical Cleavage of Layered Carbon Nitride with Enhanced Photoluminescent Performances and Photoconduction
详细信息    查看全文
文摘
Graphene quantum dots (GQDs) and carbon dots (C-dots) have various alluring properties and potential applications, but they are often limited by unsatisfied optical performance such as low quantum yield, ambiguous fluorescence emission mechanism, and narrow emission wavelength. Herein, we report that bulk polymeric carbon nitride could be utilized as a layered precursor to prepare carbon nitride nanostructures such as nanorods, nanoleaves and quantum dots by chemical tailoring. As doped carbon materials, these carbon nitride nanostructures not only intrinsically emitted UV lights but also well inherited the explicit photoluminescence mechanism of the bulk pristine precursor, both of which were rarely reported for GQDs and C-dots. Especially, carbon nitride quantum dots (CNQDs) had a photoluminescence quantum yield (QY) up to 46%, among the highest QY for metal-free quantum dots so far. As examples, the CNQDs were utilized as a photoluminescence probe for rapid detection of Fe3+ with a detection limit of 1 渭M in 2 min and a photoconductor in an all-solid-state device. This work would open up an avenue for doped nanocarbon in developing photoelectrical devices and sensors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700