用户名: 密码: 验证码:
DNA Separation in Nanowall Array Chips
详细信息    查看全文
文摘
A nanowall array structure was fabricated on a quartz chip as a separation matrix of DNA fragments, and a 30 s separation was realized for a mixture of DNA fragments (48.5 and 1 kbp fragments) by applying the electric voltage. A longer DNA fragment migrates faster than a shorter one in a nanowall array chip, and it is completely different from the separation of DNA based on gel electrophoresis, nanopillar chips, and nanoparticle array chips. Although the result is similar to DNA separation by entropic trapping, it could not be fully explained by entropic trapping phenomena. Direct observation of single-DNA molecular dynamics inside a nanowall array structure indicates that both confined elongation and relaxation recoiling of a DNA molecule occur, and an elongated DNA molecule migrates faster than a recoiled DNA molecule. Numerical fitting of DNA molecular dynamics reveals that the balance between times for the transverse of a DNA molecule in the nanowall array chip and the relaxation-recoiling of a DNA molecule governs the separation of DNA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700