用户名: 密码: 验证码:
Size-Scaling of Proton Conductivity in Amorphous Aluminosilicate Acid Thin Films
详细信息    查看全文
  • 作者:Yoshitaka Aoki ; Hiroki Habazaki ; Toyoki Kunitake
  • 刊名:Journal of the American Chemical Society
  • 出版年:2009
  • 出版时间:October 14, 2009
  • 年:2009
  • 卷:131
  • 期:40
  • 页码:14399-14406
  • 全文大小:308K
  • 年卷期:v.131,no.40(October 14, 2009)
  • ISSN:1520-5126
文摘
Amorphous aluminosilicate nanofilms, a-Al0.1Si0.9Ox, exhibit unique size-enhancement of the proton conductivity along the thickness direction because of the presence of the zeolite-like, acid site network with the mesoscopically sized dimension inside glass matrix. The dense films with the thickness of 22−1400 nm were uniformly formed over the electrode substrate in nanometer thickness precision by multiple spin-coating with a mixed precursor sol. XANES measurements indicated that the basic framework of a-Al0.1Si0.9Ox films was similar to the zeolitic one, consisting of the corner-linkage of SiO4 and AlO4 tetrahedral units. These films revealed the complex temperature- and humidity-dependency of proton conductivity by the existence of two kinds of protonic carriers: Brønsted acidic protons and Lewis acidic protons. The Brønsted acidic protons could be persistent in amorphous films at around 500 °C, as checked by thermal desorption spectroscopy, so that the film exhibited the humidity-independent proton conductivity at temperatures above 300 °C. Furthermore, the conductivity across the film σ increased in a power low by reduction of the film thickness d to less than 120 nm as σ d−τ, and it was saturated when the thickness become less than 40 nm. The observed scaling index τ was 2.2 in agreement with the value of the theoretical index (2.3) of cluster size scaling in a three-dimensional percolation system. This conduction behavior is explicable by finite size-scaling of the highly conductive pathway based on the interconnected Brønsted acid centers in the range of a few tens to hundreds of nanometers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700