用户名: 密码: 验证码:
Effect of Subsurface Oxygen on Selective Catalytic Reduction of NO by H2 on Pt(100): A First-Principles Study
详细信息    查看全文
文摘
The mechanisms of NO reduction by H2 on the Pt(100) surface and the surface modified with subsurface oxygen atoms (Md-Pt(100)) are studied by first-principles calculations. Similar catalytic activity toward NO dissociation is found on both surfaces with barriers of 0.86 and 0.96 eV, respectively. The pathway of N + N 鈫?N2 rather than NO + N 鈫?N2 + O is the N2 formation pathway on the Pt(100) surface, while these two pathways are competitive on the Md-Pt(100) surface. The NH3 formation is almost negligible, and reductant hydrogen can effectively remove the surface oxygen on both surfaces. The microkinetic analysis further confirms that, compared to the high selectivity toward N2O (almost 100% at 300鈥?00 K) on the clean surface, higher N2 low-temperature selectivity (larger than 90%) is achieved on the Md-Pt(100) surface under lower pressure. The present study shows that subsurface oxygen has an enhanced effect for improving the N2 selectivity of NO reduction on Pt catalysts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700