用户名: 密码: 验证码:
Simultaneous Enhancement of Bioactivity and Stability of Laccase by Cu2+/PAA/PPEGA Matrix for Efficient Biosensing and Recyclable Decontamination of Pyrocatechol
详细信息    查看全文
文摘
Simultaneously enhancing the catalytic bioactivity and stability of enzyme is still an intractable issue in the enzymatic study. Herein, a facile and effective approach was designed to immobilize and modify laccase on a Cu2+-adsorbed pyrene-terminated block copolymer [poly(acrylic acid)/poly(poly(ethylene glycol) acrylate)] (PAA/PPEGA), which was prepared via well-controlled reversible addition–fragmentation chain transfer polymerization. PAA provided the supporting matrix for firm immobilization of Cu2+, an enzyme bioactivity inducer, onto the microstructure of laccase, while avoiding any contamination of the heavy metal Cu2+ into the following application system. The water-soluble, biocompatible, and nontoxic PPEGA was used as an ideal modifier to improve the laccase stability. Accordingly, the modified laccase exhibited enhanced catalytic bioactivity and stability simultaneously to 447% and 237%, respectively. The modified laccase was immobilized on the highly oriented pyrolytic graphite surface and large-area graphene papers through π–π stacking interactions between the pyrene moiety of PAA/PPEGA and the π-conjugated graphenelike surface. The as-prepared portable solid-state electrochemical laccase biosensor showed lowest detection limit of 50 nM (S/N ≥ 3) and long-term stability for pyrocatechol detection. Besides, the laccase immobilization on graphene paper provided efficient pyrocatechol decontamination platform with convenience and recyclability, which could retain the laccase bioactivity of 176% after 8 consecutive operations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700