用户名: 密码: 验证码:
Investigations on V2C and V2CX2 (X = F, OH) Monolayer as a Promising Anode Material for Li Ion Batteries from First-Principles Calculations
详细信息    查看全文
文摘
First-principles calculations are performed to study the electronic properties and Li storage capability of V2C and its corresponding fluoride and hydroxide. We find that the V2C monolayer is metallic with antiferromagnetic configuration, while its derived V2CF2 and V2C(OH)2 in their the most stable configurations are small-gap antiferromagnetic semiconductors. Li adsorption could enhance the electric conductivity of V2C fluoride and hydroxide. The bare V2C monolayer shows fast Li diffusion with low diffusion barrier height and very high Li storage capacity (with theoretical value 鈭?40 mAh/g), while the passivated F or OH atoms on its surface tend to impede Li diffusion and largely reduce the Li storage capacity. Moreover, the average intercalation potentials for V2C-based materials are calculated to be relatively low. Our results suggest that V2C monolayer could be a promising anode material for Li-ion batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700