用户名: 密码: 验证码:
High-Pressure Phase Stability and Superconductivity of Pnictogen Hydrides and Chemical Trends for Compressed Hydrides
详细信息    查看全文
文摘
The recent breakthrough discovery of unprecedentedly high temperature superconductivity of 203 K in compressed sulfur hydrides has stimulated significant interest in finding new hydrogen-containing superconductors and elucidating the physical and chemical principles that govern these materials and their superconductivity. Here we report the prediction of high temperature superconductivity in the family of pnictogen hydrides using first-principles calculations in combination with global optimization structure searching methods. The hitherto unknown high-pressure phase diagrams of binary hydrides formed by the pnictogens of phosphorus, arsenic, and antimony are explored, stable structures are identified, and their electronic, vibrational, and superconducting properties are investigated. We predict that SbH4 and AsH8 are high-temperature superconductors at megabar pressures, with critical temperatures in excess of 100 K. The highly symmetrical hexagonal SbH4 phase is predicted to be stabilized above about 150 GPa, which is readily achievable in diamond anvil cell experiments. We find that all phosphorus hydrides are metastable with respect to decomposition into the elements within the pressure range studied. Trends based on our results and data in the literature reveal a connection between the high-pressure behaviors and ambient-pressure chemical quantities which provides insight into understanding which elements may form hydrogen-rich high-temperature superconducting phases at high pressures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700