用户名: 密码: 验证码:
Bimetal鈥揙rganic Framework Self-Adjusted Synthesis of Support-Free Nonprecious Electrocatalysts for Efficient Oxygen Reduction
详细信息    查看全文
文摘
The development of low-cost catalysts with oxygen reduction reaction (ORR) activity superior to that of Pt for fuel cells is highly desirable but remains challenging. Herein, we report a bimetal鈥搊rganic framework (bi-MOF) self-adjusted synthesis of support-free porous Co鈥揘鈥揅 nanopolyhedron electrocatalysts by pyrolysis of a Zn/Co bi-MOF without any post-treatments. The presence of initial Zn forms a spatial isolation of Co that suppresses its sintering during pyrolysis, and Zn evaporation also promotes the surface area of the resultant catalysts. The composition, morphology, and hence ORR activity of Co鈥揘鈥揅 could be tuned by the Zn/Co ratio. The optimal Co鈥揘鈥揅 exhibited remarkable ORR activity with a half-wave potential of 0.871 V versus the reversible hydrogen electrode (RHE) (30 mV more positive than that of commercial 20 wt % Pt/C) and a kinetic current density of 39.3 mA cm鈥? at 0.80 V versus RHE (3.1 times that of Pt/C) in 0.1 M KOH, and excellent stability and methanol tolerance. It also demonstrated ORR activity comparable to and stability much higher than those of Pt/C in acidic and neutral electrolytes. Various characterization techniques, including X-ray absorption spectroscopy, revealed that the superior activity and strong stability of Co鈥揘鈥揅 originated from the intense interaction between Co and N, the high content of ORR active pyridinic and pyrrolic N, and the large specific surface area.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700