用户名: 密码: 验证码:
Real-Time Monitoring of Anticancer Drug Release with Highly Fluorescent Star-Conjugated Copolymer as a Drug Carrier
详细信息    查看全文
文摘
Chemotherapy is one of the major systemic treatments for cancer, in which the drug release kinetics is a key factor for drug delivery. In the present work, a versatile fluorescence-based real-time monitoring system for intracellular drug release has been developed. First, two kinds of star-conjugated copolymers with different connections (e.g., pH-responsive acylhydrazone and stable ether) between a hyperbranched conjugated polymer (HCP) core and many linear poly(ethylene glycol) (PEG) arms were synthesized. Owing to the amphiphilic three-dimensional architecture, the star-conjugated copolymers could self-assemble into multimicelle aggregates from unimolecular micelles with excellent emission performance in the aqueous medium. When doxorubicin (DOX) as a model drug was encapsulated into copolymer micelles, the emission of star-conjugated copolymer and DOX was quenched. In vitro biological studies revealed that fluorescent intensities of both star-conjugated copolymer and DOX were activated when the drug was released from copolymeric micelles, resulting in the enhanced cellular proliferation inhibition against cancer cells. Importantly, pH-responsive feature of the star-conjugated copolymer with acylhydrazone linkage exhibited accelerated DOX release at a mildly acidic environment, because of the fast breakage of acylhydrazone in endosome or lysosome of tumor cells. Such fluorescent star-conjugated copolymers may open up new perspectives to real-time study of drug release kinetics of polymeric drug delivery systems for cancer therapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700