用户名: 密码: 验证码:
Direct Probing of the Structure and Electron Transfer of Fullerene/Ferrocene Hybrid on Au(111) Electrodes by in Situ Electrochemical STM
详细信息    查看全文
文摘
The electron donor鈥揳cceptor dyads are an emerging class of materials showing important applications in nonlinear optics, dye-sensitized solar cells, and molecular electronics. Investigation of their structure and electron transfer at the molecular level provides insights into the structure鈥損roperty relationship and can benefit the design and preparation of electron donor鈥揳cceptor dyad materials. Herein, the interface adstructure and electron transfer of buckyferrocene Fe(C60Me5)Cp, a typical electron donor鈥揳cceptor dyad, is directly probed using in situ electrochemical scanning tunneling microscopy (STM) combined with theoretical simulations. It is found that the adsorption geometry and assembled structure of Fe(C60Me5)Cp is significantly affected by the electrochemical environments. In 0.1 M HClO4 solution, Fe(C60Me5)Cp forms well-ordered monolayers and multilayers on Au(111) surfaces with molecular dimer as the building block. In 0.1 M NaClO4 solution, typical six-fold symmetric close-packed monolayer with vertically adsorbed Fe(C60Me5)Cp is formed. Upon electrochemical oxidation, the oxidized Fe(C60Me5)Cp shows higher brightness in an STM image, which facilitates the direct visualization of the interfacial electrochemical electron transfer process. Theoretical simulation indicates that the electrode potential-activated, one-electron transfer from Fe(C60Me5)Cp to the electrode leads to the change of the delocalization character of the frontier orbital in the molecule, which is responsible for the STM image contrast change. This result is beneficial for understanding the structure and property of single electron donor鈥揳cceptor dyads. It also provides a direct approach to study the electron transfer of electron donor鈥揳cceptor compounds at the molecular level.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700