用户名: 密码: 验证码:
Phase Transitions in Spin-Crossover Thin Films Probed by Graphene Transport Measurements
详细信息    查看全文
文摘
Future multifunctional hybrid devices might combine switchable molecules and 2D material-based devices. Spin-crossover compounds are of particular interest in this context since they exhibit bistability and memory effects at room temperature while responding to numerous external stimuli. Atomically thin 2D materials such as graphene attract a lot of attention for their fascinating electrical, optical, and mechanical properties, but also for their reliability for room-temperature operations. Here, we demonstrate that thermally induced spin-state switching of spin-crossover nanoparticle thin films can be monitored through the electrical transport properties of graphene lying underneath the films. Model calculations indicate that the charge carrier scattering mechanism in graphene is sensitive to the spin-state dependence of the relative dielectric constants of the spin-crossover nanoparticles. This graphene sensor approach can be applied to a wide class of (molecular) systems with tunable electronic polarizabilities.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700