用户名: 密码: 验证码:
Anomalous High Ionic Conductivity of Nanoporous 尾-Li3PS4
详细信息    查看全文
文摘
Lithium-ion-conducting solid electrolytes hold promise for enabling high-energy battery chemistries and circumventing safety issues of conventional lithium batteries. Achieving the combination of high ionic conductivity and a broad electrochemical window in solid electrolytes is a grand challenge for the synthesis of battery materials. Herein we show an enhancement of the room-temperature lithium-ion conductivity by 3 orders of magnitude through the creation of nanostructured Li3PS4. This material has a wide electrochemical window (5 V) and superior chemical stability against lithium metal. The nanoporous structure of Li3PS4 reconciles two vital effects that enhance the ionic conductivity: (1) the reduction of the dimensions to a nanometer-sized framework stabilizes the high-conduction 尾 phase that occurs at elevated temperatures, and (2) the high surface-to-bulk ratio of nanoporous 尾-Li3PS4 promotes surface conduction. Manipulating the ionic conductivity of solid electrolytes has far-reaching implications for materials design and synthesis in a broad range of applications, including batteries, fuel cells, sensors, photovoltaic systems, and so forth.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700