用户名: 密码: 验证码:
Enhanced Sodium Ion Storage Behavior of P2-Type Na2/3Fe1/2Mn1/2O2 Synthesized via a Chelating Agent Assisted Route
详细信息    查看全文
文摘
On the basis of resource abundance and low cost, high capacity layered P2-type Na2/3Fe1/2Mn1/2O2 material is regarded as a potential cathode material for sodium-ion batteries but suffers from its unstable structure during cycling. In this work, P2-type Na2/3Fe1/2Mn1/2O2 layered materials were synthesized by a chelating agent assisted sol–gel method with NH3·H2O. With the addition of NH3·H2O and the control of the synthesis conditions, highly active material with a more stable structure and better electrochemical performance was obtained. Furthermore, the influences of structure changes during different voltage ranges (1.5–4.0 V and 1.5–4.3 V vs Na+/Na) on the Na+ storage behaviors were also evaluated and compared. It is confirmed that, when being charged to 4.2 V, an OP4-type phase emerges, which can reduce the damage by the gilding of the MeO2 layers but leads to an unstable crystal structure. For long-term cycling, it is preferred to cut off at 4.0 V rather than at 4.3 V. For the optimized P2-type Na2/3Fe1/2Mn1/2O2 calcined at 900 °C, a discharge capacity of 92 mAh/g remains after 40 cycles in the voltage range of 1.5–4.0 V, and the Coulombic efficiency remains 100%.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700