用户名: 密码: 验证码:
Transformation and Immobilization of Chromium by Arbuscular Mycorrhizal Fungi as Revealed by SEM鈥揈DS, TEM鈥揈DS, and XAFS
详细信息    查看全文
文摘
Arbuscular mycorrhizal fungi (AMF), ubiquitous soil fungi that form symbiotic relationships with the majority of terrestrial plants, are known to play an important role in plant tolerance to chromium (Cr) contamination. However, the underlying mechanisms, especially the direct influences of AMF on the translocation and transformation of Cr in the soil鈥損lant continuum, are still unresolved. In a two-compartment root-organ cultivation system, the extraradical mycelium (ERM) of mycorrhizal roots was treated with 0.05 mmol L鈥? Cr(VI) for 12 days to investigate the uptake, translocation, and transformation of Cr(VI) by AMF using inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy equipped with energy-dispersive spectroscopy (SEM鈥揈DS), transmission electron microscopy equipped with energy-dispersive spectroscopy (TEM鈥揈DS), and X-ray-absorption fine structure (XAFS) technologies. The results indicated that AMF can immobilize quantities of Cr via reduction of Cr(VI) to Cr(III), forming Cr(III)鈥損hosphate analogues, likely on the fungal surface. Besides this, we also confirmed that the extraradical mycelium (ERM) can actively take up Cr [either in the form of Cr(VI) or Cr(III)] and transport Cr [potentially in the form of Cr(III)-histidine analogues] to mycorrhizal roots but immobilize most of the Cr(III) in the fungal structures. Based on an X-ray absorption near-edge spectroscopy analysis of Cr(VI)-treated roots, we proposed that the intraradical fungal structures can also immobilize Cr within mycorrhizal roots. Our findings confirmed the immobilization of Cr by AMF, which plays an essential role in the Cr(VI) tolerance of AM symbioses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700