用户名: 密码: 验证码:
Direct Transformation from Graphitic C3N4 to Nitrogen-Doped Graphene: An Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction
详细信息    查看全文
文摘
Carbon-based nanomaterials provide an attractive perspective to replace precious Pt-based electrocatalysts for oxygen reduction reaction (ORR) to enhance the practical applications of fuel cells. Herein, we demonstrate a one-pot direct transformation from graphitic-phase C3N4 (g-C3N4) to nitrogen-doped graphene. g-C3N4, containing only C and N elements, acts as a self-sacrificing template to construct the framework of nitrogen-doped graphene. The relative contents of graphitic and pyridinic-N can be well-tuned by the controlled annealing process. The resulting nitrogen-doped graphene materials show excellent electrocatalytic activity toward ORR, and much enhanced durability and tolerance to methanol in contrast to the conventional Pt/C electrocatalyst in alkaline medium. It is determined that a higher content of N does not necessarily lead to enhanced electrocatalytic activity; rather, at a relatively low N content and a high ratio of graphitic-N/pyridinic-N, the nitrogen-doped graphene obtained by annealing at 900 掳C (NGA900) provides the most promising activity for ORR. This study may provide further useful insights on the nature of ORR catalysis of carbon-based materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700