用户名: 密码: 验证码:
Poly(lactic-co-glycolic acid) (PLGA) as Ion-Conducting Polymer for Biodegradable Light-Emitting Electrochemical Cells
详细信息    查看全文
文摘
The use of biocompatible and biodegradable materials in optoelectronics will enable the development of promising applications in the field of healthcare and environmental sensors as well as a more sustainable production of technology. Here, we present light-emitting electrochemical cells which utilize the biodegradable polymer poly(lactic-co-glycolic acid) (PLGA) to promote ionic conductivity in the active layer of light-emitting electrochemical cells. The device performance was analyzed in terms of the volume fraction of PLGA in the active layer blend as well as with respect to three different lactic:glycolic monomer ratios (85:15, 75:25, 65:35). In all three cases, adding PLGA to the active layer leads to an improvement of the turn-on voltage of up to 2 V compared to reference devices without PLGA. This can be attributed to an increase in ionic conductivity, which was determined by impedance spectroscopy. Increasing the relative amount of PLGA in the active layer shows that the improvement is ultimately limited by poor intermixing with the polymeric emitter as observed by fluorescent microscopy. The best devices achieved turn-on voltages of 4.1 V and a maximum luminance of 3800 cd m–2 at 7.1 V.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700