用户名: 密码: 验证码:
Ion-Responsive Channels of Zwitterion-Carbon Nanotube Membrane for Rapid Water Permeation and Ultrahigh Mono-/Multivalent Ion Selectivity
详细信息    查看全文
文摘
The rational combination of polymer matrix and nanostructured building blocks leads to the formation of composite membranes with unexpected capability of selectivity of monovalent electrolytes and water, which affords the feasibility to effeciently remove harmful ions and neutral molecules from the environment of concentrated salines. However, the multivalent ion rejection in salined water of routine nanocomposite membranes was less than 98% when ion strength is high, resulting in a poor ion selectivity far below the acceptable value. In this contribution, the ion-responsive membrane with zwitterion-carbon nanotube (ZCNT) entrances at the surface and nanochannels inside membrane has been proposed to obtain ultrahigh multivalent ion rejection. The mean effective pore diameter of ZCNT membrane was dedicated tuned from 1.24 to 0.54 nm with the rise in Na2SO4 concentration from 0 to 70 mol m鈥? as contrary to the conventional rejection drop in carbon nanotube (CNT) membrane. The ultrahigh selective permeabilities of monovalent anions against divalent anions of 93 and against glucose of 5.5 were obtained on ZCNT membrane, while such selectivities were only 20 and 1.6 for the pristine CNT membrane, respectively. The ZCNT membranes have potential applications in treatment of salined water with general NaCl concentration from 100 to 600 mol m鈥?, which are widely applicable in desalination, food, and biological separation processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700