用户名: 密码: 验证码:
Ultrasensitive in Situ Label-Free DNA Detection Using a GaN Nanowire-Based Extended-Gate Field-Effect-Transistor Sensor
详细信息    查看全文
文摘
In this study, we have successfully demonstrated that a GaN nanowire (GaNNW) based extended-gate field-effect-transistor (EGFET) biosensor is capable of specific DNA sequence identification under label-free in situ conditions. Our approach shows excellent integration of the wide bandgap semiconducting nature of GaN, surface-sensitivity of the NW-structure, and high transducing performance of the EGFET-design. The simple sensor-architecture, by direct assembly of as-synthesized GaNNWs with a commercial FET device, can achieve an ultrahigh detection limit below attomolar level concentrations: about 3 orders of magnitude higher in resolution than that of other FET-based DNA-sensors. Comparative in situ studies on mismatches (鈥渉otspot鈥?mutations related to human p53 tumor-suppressor gene) and complementary targets reveal excellent selectivity and specificity of the sensor, even in the presence of noncomplementary DNA strands, suggesting the potential pragmatic application in complex clinical samples. In comparison with GaN thin film, NW-based EGFET exhibits excellent performance with about 2 orders higher sensitivity, over a wide detection range, 10鈭?9鈭?0鈭? M, reaching about a 6-orders lower detection limit. Investigations illustrate the unique and distinguished feature of nanomaterials. Detailed studies indicate a positive effect of energy band alignment at the biomaterials鈭抯emiconductor hybrid interface influencing the effective capacitance and carrier-mobility of the system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700