用户名: 密码: 验证码:
Mechanistic Study of Gas-Phase Controlled Synthesis of Copper Oxide-Based Hybrid Nanoparticle for CO Oxidation
详细信息    查看全文
文摘
We report a systematic study of gas-phase controlled synthesis of copper oxides-based hybrid nanoparticles for catalytic CO oxidation. The complementary physical, spectroscopic, and microscopic analyses were conducted to obtain a better understanding of the material properties, including particle size, crystallinity, elemental composition, and oxidation state. Results showed that the synthesized nanoparticles exhibited highly durable catalytic activity and stability, also the particle size, crystallite size, and chemical composition were tunable by choosing suitable chemical compositions of precursors and temperatures. The crystallite size of CuO influenced the reducibility of CuO by CO and the subsequent catalytic activity of CO oxidation. The hybridization process of CeO2 and CuO induces the formation of new active sites at the Cu–Ce–O interface, which enhances reproducibility of CuO and the catalytic activity. However, the reproducibility of CuO and catalytic activity were considerably decreased when CeO2 was replaced with the inert Al2O3. This work describes a prototype method to form highly pure and well-controlled hybrid nanocatalysts, which can be used to establish the correlation of material properties versus reducibility and subsequent catalytic activity for energy and environmental applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700