用户名: 密码: 验证码:
Curvature-Dependent Selectivity of CO2 Electrocatalytic Reduction on Cobalt Porphyrin Nanotubes
详细信息    查看全文
文摘
The selective electrocatalytic conversion of CO2 into useful products is a major challenge in facilitating a closed carbon cycle. Here, on the basis of first-principles calculations combined with computational hydrogen electrode model, we report a curvature-dependent selectivity of CO2 reduction on cobalt–porphyrin nanotubes which are thermodynamically stable, displaying tunable geometric and electronic properties with tube radius. We have found that CO production is preferred on nanotubes with larger diameter, and the predicted current density from microkinetics is larger than that on Au, the best metal catalyst for CO production from CO2 electroreduction. In contrast, highly curved nanotubes with small radii tend to further catalyze CO reduction to CH4 gas and the overpotential is much lower in comparison with the cases on Cu surfaces. The selectivity and the feasibility of synthesis make cobalt–porphyrin nanotubes very promising for CO2 conversion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700