用户名: 密码: 验证码:
Enhanced Anode Performances of Polyaniline鈥揟iO2鈥揜educed Graphene Oxide Nanocomposites for Lithium Ion Batteries
详细信息    查看全文
文摘
Here, we report a three-layer-structured hybrid nanostructure consisting of transition metal oxide TiO2 nanoparticles sandwiched between carbonaceous polymer polyaniline (PANI) and graphene nanosheets (termed as PTG), which, by simultaneously hindering the agglomeration of TiO2 nanoparticles and enhancing the conductivity of PTG electrode, enables fast discharge and charge. It was demonstrated that the PTG exhibited improved electrochemical performance compared to pure TiO2. As a result, PTG nanocomposite is a promising anode material for highly efficient lithium ion batteries (LIBs) with fast charge/discharge rate and high enhanced cycling performance [discharge capacity of 149.8 mAh/g accompanying Coulombic efficiency of 99.19% at a current density of 5C (1000 mA/g) after 100 cycles] compared to pure TiO2. We can conclude that the concept of applying three-layer-structured graphene-based nanocomposite to electrode in LIBs may open a new area of research for the development of practical transition-metal oxide graphene-based electrodes which will be important to the progress of the LIBs science and technology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700