用户名: 密码: 验证码:
Enhancing Proton Transport and Membrane Lifetimes in Perfluorosulfonic Acid Proton Exchange Membranes: A Combined Computational and Experimental Evaluation of the Structure and Morphology Changes Due
详细信息    查看全文
文摘
The impact of loading the heteropoly acid, 12-phosphotungstic acid (HPW), on a perfluorosulfonic acid (PFSA) proton exchange membrane鈥檚 morphology was evaluated by means of molecular dynamics (MD) simulations and small-angle X-ray scattering (SAXS) experiments. It is found that the addition of HPW significantly modifies the solvent structure and dynamics in the PFSA membrane, which favors the formation of interconnected proton conducting networks. It is hypothesized that these HPW induced solvent modifications account for the enhanced proton conducting characteristics of these doped membranes. Radial distribution functions and water cluster analysis indicate that the HPW organizes the local solvent water and attracts the nearby excess protons thereby creating localized 鈥渘odes鈥?of ordered water and hydronium ions. The 鈥渘odes鈥?are found to connect surrounding water wires/channels resulting in a more efficient proton conducting network. This redistribution of solvent and hydronium ions upon addition of HPW creates a shift in the hydrophilic cluster size distribution and the overall membrane morphology. Hydrophilic cluster size analysis indicates that a high percentage of small clusters (d < 15 脜) exist in low HPW doped systems (i.e., 1%), while larger clusters (d > 15 脜) exist for the high HPW doped systems (i.e., 5%). At low hydration levels, the water domains are found to be spheroidal inverted micelles embedded in an ionomer matrix, while at high hydration levels the solvent morphology shifts to a parallel spheroidal elongated cylinder. It is also observed that for the high HPW doping levels the SAXS pattern changes intensity at the low q region and Bragg peaks become present, which indicates the presence of crystalline HPW. These morphological changes create a more interconnected pathway through which the hydrated excess protons may transverse thereby enhancing the PFSA membrane鈥檚 conductivity

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700