用户名: 密码: 验证码:
Surfactant-Triggered Nanoarchitectonics of Fullerene C60 Crystals at a Liquid–Liquid Interface
详细信息    查看全文
文摘
Here, we report the structural and morphological modulation of fullerene C60 crystals induced by nonionic surfactants diglycerol monolaurate (C12G2) and monomyristate (C14G2). C60 crystals synthesized at a liquid–liquid interface comprising isopropyl alcohol (IPA) and a saturated solution of C60 in ethylbenzene (EB) exhibited a one-dimensional (1D) morphology with well-defined faceted structure. Average length and diameter of the faceted rods were ca. 4.8 μm and 747 nm, respectively. Powder X-ray diffraction pattern (pXRD) confirmed a hexagonal-close packed (hcp) structure with cell dimensions ca. a = 2.394 nm and c = 1.388 nm. The 1D rod morphology of C60 crystals was transformed into “Konpeito candy-like” crystals (average diameter ca. 1.2 μm) when the C60 crystals were grown in the presence of C12G2 or C14G2 surfactant (1%) in EB. The pXRD spectra of “Konpeito-like” crystals could be assigned to the face-centered cubic (fcc) phase with cell dimensions ca. a = 1.4309 nm (for C12G2) and a = 1.4318 nm (for C14G2). However, clusters or aggregates of C60 lacking a uniform morphology were observed at lower surfactant concentrations (0.1%), although these crystals exhibited an fcc crystal structure. The self-assembled 1D faceted C60 crystals and “Konpeito-like” C60 crystals exhibited intense photoluminescence (PL) (∼35 times greater than pC60) and a blue-shifted PL intensity maximum (∼15 nm) compared to those of pC60, demonstrating the potential use of this method for the control of the optoelectronic properties of fullerene nanostructures. The “Konpeito-like” crystals were transformed into high surface area nanoporous carbon with a graphitic microstructure upon heat-treatment at 2000 °C. The heat-treated samples showed enhanced electrochemical supercapacitance performance (specific capacitance is ca. 175 F g–1, which is about 20 times greater than pC60) with long cyclic stability demonstrating the potential of the materials in supercapacitor device fabrication.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700